Semantics for a basic relevant logic with intensional conjunction and disjunction (and some of its extensions)

YING GAO and JINGDE CHENG

Department of Information and Computer Sciences, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
Email: {gaoying,cheng}@aise.ics.saitama-u.ac.jp

Received 16 June 2006; revised 17 February 2007

In Memory of Sauro Tulipani

This paper proposes a new relevant logic \(B^{\ominus\sqcup}_+ \), which is obtained by adding two binary connectives, \(\ominus \) and \(\sqcup \), to Meyer–Routley minimal positive relevant logic \(B^+ \), where \(\ominus \) and \(\sqcup \) are weaker than fusion \(\circ \) and fission \(+ \), respectively. We give Kripke-style semantics for \(B^{\ominus\sqcup}_+ \), with \(\rightarrow \), \(\ominus \) and \(\sqcup \) modelled by ternary relations. We prove the soundness and completeness of the proposed semantics. A number of axiomatic extensions of \(B^{\ominus\sqcup}_+ \), including negation-extensions, are also considered, together with the corresponding semantic conditions required for soundness and completeness to be maintained.

1. Introduction

With sufficiently strong relevant logics, there are two derivative connectives, \(\circ \) and \(+ \), which may be defined as \(A \circ B =_{df} \neg(A \rightarrow \neg B) \) and \(A + B =_{df} \neg A \rightarrow B \) (Anderson and Belnap 1975). The former is called fusion and the latter fission. These two connectives may also be called intensional conjunction and intensional disjunction, since they may share some of the features classically attributed to extensional conjunction \(\land \) and disjunction \(\lor \), respectively. In general, \(\land \) will be interpreted as a lattice ‘meet’ and \(\lor \) as a lattice ‘join’. But \(\circ \) fails to have ‘the lattice property’ \(A \circ B \rightarrow A \) or \(A \circ B \rightarrow B \), so it is not \(\land \); similarly, \(+ \) fails to satisfy \(A \rightarrow A + B \) or \(B \rightarrow A + B \), so it is not \(\lor \).

By the above definitions, \(\circ \) and \(+ \) are highly related to implication \(\rightarrow \) and negation \(\neg \). But in various applications in computer science and artificial intelligence such as automated theorem finding, knowledge discovery, reasoning rule generation, and so on, weaker versions of the standard intensional connectives \(\circ \) and \(+ \) may play important roles (Cheng 2006). In order to axiomatise logics with weaker intensional conjunction and disjunction, we propose a basic relevant logic \(B^{\ominus\sqcup}_+ \), which is obtained by adding two binary connectives, \(\ominus \) and \(\sqcup \), to the minimal positive relevant logic \(B^+ \) proposed in Routley and Meyer (1972), where \(\ominus \) and \(\sqcup \) are characterised in such a way that neither of them relies on the presence of negation \(\neg \). That is, we adopt Dunn’s approach (Dunn 1990) in which we assign to each of \(\ominus \) and \(\sqcup \) a distribution type\(^\dagger\) such that \(\ominus \) shares the same distribution type with

\(^\dagger\) Dunn’s general approach is algebraic, where each logical connective is characterised as an operation on distributive lattices, which ‘distributes’ in each of its places over at least one of \(\land \) and \(\lor \), leaving \(\land \) or
\(\sigma^+,\) and \(\sqcup\) share with \(\vdash^+\). Then, additional axioms or rules can be added to make \(\sqcap\) coincide with \(\sigma\), and \(\sqcup\) with \(\vdash\). This qualifies \(\sqcap\) and \(\sqcup\) as weaker versions of intensional conjunction and disjunction, respectively.

To give a semantics for \(B^+_\ell\), we apply Dunn’s strategy (Dunn 1990), that is, we use \(n+1\)-placed accessibility relations to model \(n\)-placed connectives. The semantics is defined by adapting and extending the traditional relational semantics for relevant logics. There are four ternary relations: \(R_1\) and \(R_2\) for \(\to\); \(S_1\) for \(\sqcap\); and \(S_2\) for \(\sqcup\). To construct canonical models, as well as theories and anti-dualtheories, we define dualtheories and anti-dualtheories such that \(R_1, R_2, S_1, S_2\) are canonically defined as derivatives of operations on theories and anti-dualtheories. The crucial tools for completeness are extensions or reductions of a given theory or anti-dualtheory to a prime theory. Then, by well-known standard techniques, together with our extra definitions, we can establish the soundness and completeness of the proposed semantics for \(B^+_\ell\). Furthermore, we consider a number of axiomatic extensions of \(B^+_\ell\), (including negation-extensions with negation modelled by the Routley \(\star\) operation), together with the corresponding semantic conditions to ensure that soundness and completeness are maintained.

2. The basic system \(B^+_\ell\)

2.1. An axiom system for \(B^+_\ell\)

\(B^+_\ell\) is expressed in a language \(L\), which has the two-place connectives \(\to, \land, \lor, \sqcap, \sqcup\), parentheses \((\) and \()\), and a stock of propositional variables \(p, q, r, ...\) Formulas are defined recursively in the usual manner. We use the following scope conventions: the connectives are ranked \(\sqcap, \sqcup, \land, \lor, \to\) in order of increasing scope (that is, \(\sqcap\) binds more strongly than \(\sqcup\), \(\sqcup\) binds more strongly than \(\land\), and so on), otherwise, association is to the left. \(A, B, C, ...\) will be used to range over arbitrary formulas.

We begin by giving an axiom system for \(B^+\), which is defined in the same way as that of Priest and Sylvan (1992) and Restall (1993)\(^{\dagger}\):

Axioms

\[\begin{align*}
A_1 & \quad A \to A \\
A_2 & \quad A \to A \lor B, \ B \to A \lor B \\
A_3 & \quad A \land B \to A, \ A \land B \to B \\
A_4 & \quad A \land (B \lor C) \to (A \land B) \lor C \\
A_5 & \quad (A \to B) \land (A \to C) \to (A \to B \land C) \\
A_6 & \quad (A \to C) \land (B \to C) \to (A \lor B \to C)
\end{align*}\]

\(\lor\) unchanged or switching it with its dual. More explicitly, let \(\tau\) (with subscripts) range over \([\land, \lor]\), and associate with each \(n\)-ary operation \(f\) a distribution type \((\tau_1, \ldots, \tau_n) \mapsto \tau\). Then, where \(*\) and \(\star\) is \(\land\) or \(\lor\) depending on the value of \(\tau_i\) and \(\tau\) respectively, \(f(a_1, \ldots, b \ast c, \ldots, a_n) = f(a_1, \ldots, b, \ldots, a_n) \ast f(a_1, \ldots, c, \ldots, a_n)\).

\(\dagger\) When \(\odot\) is defined as \(A \odot B =_{df} \neg (A \to \neg B)\), its distribution type is \((\lor, \lor) \mapsto \lor\), that is, \(\odot\) satisfies
\((A \lor B) \odot C \leftrightarrow (A \odot C) \lor (B \odot C)\) and \(C \odot (A \lor B) \leftrightarrow (C \odot A) \lor (C \odot B)\).

\(\ddagger\) When \(\oplus\) is defined as \(A \oplus B =_{df} \neg A \to B\), its distribution type is \((\land, \land) \mapsto \land\), that is, \(\oplus\) satisfies
\((A \land B) \oplus C \leftrightarrow (A \land C) \land (B \land C)\) and \(C \oplus (A \land B) \leftrightarrow (C \land A) \land (C \land B)\).

\(\S\) Here, disjunctive forms of rules are not given separately.
Rules

\begin{itemize}
 \item \textbf{R1} \quad A, A \rightarrow B \Rightarrow B \quad (\text{Modus Ponens})
 \item \textbf{R2} \quad A, B \Rightarrow A \land B \quad (\text{Adjunction})
 \item \textbf{R3} \quad A \rightarrow B, C \rightarrow D \Rightarrow (B \rightarrow C) \rightarrow (A \rightarrow D) \quad (\text{Affixing}).
\end{itemize}

Thus \mathbf{B}^+_{RL} is obtained by adding the following axioms and rules to \mathbf{B}^+:

\begin{itemize}
 \item \textbf{A7} \quad (A \lor B) \sqcap C \leftrightarrow (A \sqcap C) \lor (B \sqcap C),
 \quad C \sqcap (A \lor B) \leftrightarrow (C \sqcap A) \lor (C \sqcap B)
 \item \textbf{A8} \quad (A \land C) \land (B \sqcup C) \leftrightarrow (A \land B) \sqcup C,
 \quad (C \sqcup A) \land (C \sqcup B) \leftrightarrow C \sqcup (A \land B)
 \item \textbf{R4} \quad A \rightarrow B, C \rightarrow D \Rightarrow A \sqcap C \rightarrow B \sqcap D
 \item \textbf{R5} \quad A \rightarrow B, C \rightarrow D \Rightarrow A \sqcup C \rightarrow B \sqcup D.
\end{itemize}

It may be noted that special cases of \textbf{R3} are:

\begin{itemize}
 \item $A \rightarrow B \Rightarrow (C \rightarrow A) \rightarrow (C \rightarrow B)$ \quad (Prefixing)
 \item $A \rightarrow B \Rightarrow (B \rightarrow C) \rightarrow (A \rightarrow C)$ \quad (Suffixing)
 \item $A \rightarrow B, B \rightarrow C \Rightarrow A \rightarrow C$ \quad (Transitivity).
\end{itemize}

And special cases of \textbf{R4} and \textbf{R5} are, respectively:

\begin{itemize}
 \item $A \rightarrow B \Rightarrow C \sqcap A \rightarrow C \sqcap B$
 \item $A \rightarrow B \Rightarrow A \sqcap C \rightarrow B \sqcap C$
 \item $A \rightarrow B \Rightarrow C \sqcup A \rightarrow C \sqcup B$
 \item $A \rightarrow B \Rightarrow A \sqcup C \rightarrow B \sqcup C$.
\end{itemize}

Note that \textbf{A7} and \textbf{A8} contain slight redundancies. \textbf{R4} and \textbf{R5}, together with the axioms and rules of \mathbf{B}^+, suffice to prove each of \textbf{A7} and \textbf{A8} in right-to-left direction.

Given a logical system \mathbf{L}, we use $\vdash_{\mathbf{L}} A$ to denote the fact that A is a theorem of \mathbf{L}. If \mathbf{L} is obvious, the subscript ‘\mathbf{L}’ will be omitted.

2.2. Semantics for \mathbf{B}^+_{RL}

Now we define semantics for \mathbf{B}^+_{RL}. We also give some notions for its extensions, that is, logics obtained by adding one or more axioms or rules to \mathbf{B}^+_{RL}. The semantics is an extension of the traditional semantics for \mathbf{B}^+ – see Routley et al. (1982, Chapter 4).

A \mathbf{B}^+_{RL}-frame (or model structure) is a 7-tuple $\mathcal{F} = < o, W, O, R_1, R_2, S_1, S_2 >$, where W is a set (of worlds), $o \in W$ (the base world), O is a nonempty subset of W, and R_1, R_2, S_1, and S_2 are ternary relations on W, such that definitions \textbf{d1}–\textbf{d4} apply and postulates \textbf{p1}–\textbf{p7} hold for every $a, b, c, d, e \in W$.

\begin{itemize}
 \item \textbf{d1.} \quad a \leq b =_{df} \exists x (x \in O \text{ and } R_1 x a b)
 \item \textbf{d2.} \quad T_1 (T_2 a b) c d =_{df} \exists x (T_2 a b x \text{ and } T_1 x c d)
 \item \textbf{d3.} \quad T_1 a (T_2 b c) d =_{df} \exists x (T_2 b c x \text{ and } T_1 a x d)
 \item \textbf{d4.} \quad T (T_1 a b) (T_2 c d) e =_{df} \exists x, y (T_1 a b x, T_2 c d y \text{ and } T x y e),
\end{itemize}

\footnote{Because the system \mathbf{B}^+_{RL} is not strong enough, we can not use a ‘reduced’ frame, that is, to reduce O to a single element, that is, the base world o. Actually, in non-reduced frames O plays an important role to guarantee the soundness result.}
where \(T, T_1 \) and \(T_2 \) represent any of \(R_1, R_2, S_1 \) and \(S_2 \). For \(d2 \) and \(d3 \), if \(T_1 \) and \(T_2 \) coincide, we usually abbreviate \(T_1(T_2ab)cd \) to \(T_1(ab)cd \), and \(T_1a(T_2bc)d \) to \(T_1a(bc)d \). For example, \(R_1(S_2ab)cd \) is defined as \(\exists x(S_2abx \text{ and } R_1xcd) \), and \(R_1(ab)cd \) as \(\exists x(R_1abx \text{ and } R_1xcd) \).

Evaluation Rules.

1. \(o \in O \)
2. \(a \leq a \)
3. \(R_1abc \text{ iff } R_2acb \)
4. \(\text{if } R_1abc \text{ and } a' \leq a, \text{ then } R_1a'bc \)
5. \(\text{if } R_2abc \text{ and } a' \leq a, \text{ then } R_2abd \)
6. \(\text{if } S_1abc \text{ and } c \leq c', \text{ then } S_1abc' \)
7. \(\text{if } S_2abc \text{ and } c' \leq c, \text{ then } S_2abc' . \)

In fact, definitions \(d2–4 \) are only necessary for some extensions of \(B_{++} \). We list them here for later use.

A \(B^+_{++} \)-model (or interpretation) is an 8-tuple \(\mathcal{M} = < o, W, O, R_1, R_2, S_1, S_2, I > \), where \(< o, W, O, R_1, R_2, S_1, S_2 > \) is a \(B^+_{++} \)-frame and \(I \) is a function that assigns to each pair of a formula, \(A \), and a world, \(x \), a truth value \(I(A,x) \in \{ 1, 0 \} \) that satisfies the following condition and rules.

Atomic Hereditary Condition.

For a propositional variable \(p \), if \(I(p,x) = 1 \) and \(x \leq y \), then \(I(p,y) = 1 \).

Evaluation Rules.

- \((\wedge) \quad I(A \land B, a) = 1 \text{ iff } I(A, a) = 1 \text{ and } I(B, a) = 1 \)
- \((\lor) \quad I(A \lor B, a) = 1 \text{ iff } I(A, a) = 1 \text{ or } I(B, a) = 1 \)
- \((\exists) \quad I(A \cup B, c) = 1 \text{ iff } \exists a, b \in W, S_1abc, I(A, a) = 1 \text{ and } I(B, b) = 1 \)
- \((\forall) \quad I(A \subseteq B, c) = 1 \text{ iff } \forall a, b \in W, S_2abc, \text{ if } I(A, a) = 1 \text{ or } I(B, b) = 1 \)
- \((\to) I(A \to B, a) = 1 \text{ iff } \forall b, c \in W, \text{ if } R_1abc \text{ and } I(A, b) = 1, \text{ then } I(B, c) = 1 \)
- \((\to') I(A \to B, a) = 1 \text{ iff } \forall b, c \in W, \text{ if } R_2abc \text{ and } I(A, c) = 1, \text{ then } I(B, b) = 1 . \)

With \(p3 \), it is easy to see that the rules \((\to)\) and \((\to')\) are equivalent. Hence, if we omit \(R_2 \), a \(B^+_{++} \)-model is indeed an extension of a \(B^+ \)-model by adding definitions and postulates for \(S_1, S_2 \) and evaluation rules for \(\cap, \cup \). But, the inclusion of \(R_2 \) makes it easier to give semantic conditions for additional axioms or rules involving \(\subseteq \). So, we introduce relation \(R_2 \) and rule \((\to')\).

In this paper, we will usually use the following rules, which are equivalent to the above rules \((\exists)\) and \((\to')\), respectively:

- \((\exists') I(A \cup B, c) \neq 1 \text{ iff } \exists a, b \in W, S_2abc, I(A, a) \neq 1 \text{ and } I(B, b) \neq 1 ; \)
- \((\to'_2) I(A \to B, a) = 1 \text{ iff } \forall b, c \in W, \text{ if } R_2abc \text{ and } I(B, b) \neq 1, \text{ then } I(A, c) \neq 1 . \)

Assuming \(L \) is a logic obtained by adding additional axioms or rules to \(B^+_{++} \), an \(L \)-frame \(\mathcal{F} \) or \(L \)-model \(\mathcal{M} \) is obtained by adding corresponding conditions to a \(B^+_{++} \)-frame or \(B^+_{++} \)-model.

Our representation is a little different from that in Routley et al. (1982), where, given a ternary relation \(R \), we have \(R^3abce \equiv df \exists x(Rabx \text{ and } Rcx), R^2ab(cd) \equiv df \exists x(Rbcx \text{ and } Raxd) \), and \(R^3ab(cd)e \equiv df \exists x(R^2abxe \text{ and } Redx) \).
Now, taking \(L \) to be any logic in this paper, we define:

- \(A \) is valid on an \(L \)-model if \(I(A, o) = 1 \).
- \(A \) implies \(B \) on an \(L \)-model if for every \(a \in W \), if \(I(A, a) = 1 \), then \(I(B, a) = 1 \).
- \(A \) is valid on an \(L \)-frame if \(A \) is valid on every \(L \)-model based on this frame.
- \(A \) implies \(B \) on an \(L \)-frame if \(A \) implies \(B \) on every \(L \)-model based on this frame.
- \(A \) is \(L \)-valid if \(A \) is valid on every \(L \)-frame.
- \(A \) \(L \)-implies \(B \) if \(A \) implies \(B \) on every \(L \)-frame.

The following lemmas will simplify the proof for soundness.

Lemma 2.1 (Hereditary Condition). For an arbitrary formula \(A \), if \(I(A, x) = 1 \) and \(x \leq y \), then \(I(A, y) = 1 \).

Proof. The proof is by an induction on the construction of \(A \) with the Atomic Hereditary Condition as basis – note how \(p4–7 \) are used. We just give proofs for \(\sqcap \), \(\sqcup \).

\((\sqcap)\) Suppose \(I(A \sqcap B, x) = 1 \) and \(x \leq y \). Then, \(\exists a, b \in W \) such that \(S_1abx \), \(I(A, a) = 1 \) and \(I(B, b) = 1 \). By \(p6 \), we have \(S_1aby \). So \(I(A \sqcap B, y) = 1 \) as required.

\((\sqcup)\) Suppose \(I(A \sqcup B, y) \neq 1 \) and \(x \leq y \), to show \(I(A \sqcup B, x) \neq 1 \). Then \(\exists a, b \in W \) such that \(S_2aby \), \(I(A, a) \neq 1 \) and \(I(B, b) \neq 1 \). By \(p7 \), \(S_2abx \). So \(I(A \sqcup B, x) \neq 1 \) as required.

Lemma 2.2 (Verification Lemma).

1. If \(A \) implies \(B \) on an \(L \)-model, then \(A \rightarrow B \) is valid on this model.
2. If \(A \) implies \(B \) on an \(L \)-frame, then \(A \rightarrow B \) is valid on this frame.
3. \(A \) \(L \)-implies \(B \) if and only if \(A \rightarrow B \) is \(L \)-valid.

Proof. The proof is similar to that in Routley et al. (1982, pages 302–303). It is easy to show (1) and (2) and the left-to-right direction of (3) by \(d1, p1 \), rule \((\rightarrow_1) \) and Lemma 2.1. The converses of (1) and (2) fail, since there is no guarantee that \(R_1oaa \) holds for every \(a \) in an arbitrary \(L \)-frame or \(L \)-model.

We will now give the proof in full for the right-to-left direction of (3). Assume \(A \rightarrow B \) is \(L \)-valid. Suppose \(F \) is an arbitrary \(L \)-frame with the base world \(o \) in order to show \(A \) implies \(B \) on \(F \). Suppose also that \(\mathcal{M} \) is an arbitrary \(L \)-model based on \(F \) with the assignment function \(I \), and that \(I(A, a) = 1 \) for an arbitrary \(a \in W \). Then it suffices to show \(I(B, a) = 1 \), since then \(A \) implies \(B \) on \(\mathcal{M} \), and, furthermore, since \(\mathcal{M} \) is arbitrary, \(A \) implies \(B \) on \(F \). Now by \(d1 \) and \(p2 \), for some \(o' \in W \), we have \(o' \in O \) and \(R_3o'aa \). Consider an \(L \)-frame \(F' \), which differs from \(F \) simply in a change in the base world brought about by selecting \(o' \) as base in place of \(o \). So \(F' \) is an \(L \)-frame, since no semantic condition depends on the choice of \(o \) as base. We now define an assignment function \(I' \) in \(F' \) such that \(I'(C, x) = I(C, x) \) for every formula \(C \) and every world \(x \). Hence we obtain an \(L \)-model \(\mathcal{M}' \) based on \(F' \) with the assignment function \(I' \) such that \(I'(A, a) = 1 \) and \(I'(B, a) = I(B, a) \). \(\mathcal{M}' \) is indeed an \(L \)-model, since neither the Atomic Hereditary Condition nor the Evaluation Rules depend on the choice of \(o \) as base, so both of them still hold. Since \(A \rightarrow B \) is \(L \)-valid, \(I'(A \rightarrow B, o') = 1 \). But \(R_1o'aa \), so it follows that \(I'(B, a) = 1 \) by rule \((\rightarrow_1) \). Hence \(I(B, a) = 1 \) as required.
Thus, for soundness, in order to show the validity of axioms with the form $A \rightarrow B$, we usually suppose for an arbitrary L-model \mathcal{M}, that $I(A, x) = 1$ ($I(B, x) \neq 1$) in order to show $I(B, x) = 1$ ($I(A, x) \neq 1$). Then, $A \rightarrow B$ is valid on \mathcal{M} by Lemma 2.2 (1). Hence, since \mathcal{M} is arbitrary, $A \rightarrow B$ is L-valid. Conversely, if $A \rightarrow B$ is L-valid, then for an arbitrary L-model \mathcal{M}, we will have $I(B, x) = 1$ ($I(A, x) \neq 1$) from $I(A, x) = 1$ ($I(B, x) \neq 1$) by Lemma 2.2 (3).

2.3. Soundness

In this section we demonstrate the soundness of the semantics for $B_{\mathbb{T}_{\mathbb{L}}} \subseteq V, U$.

Theorem 2.3. If A is a theorem of $B_{\mathbb{T}_{\mathbb{L}}}^+$, then A is $B_{\mathbb{T}_{\mathbb{L}}}^+$-valid.

Proof. The proof is by a simple induction over the length of proofs. It suffices to prove that all axioms are $B_{\mathbb{T}_{\mathbb{L}}}^+$-valid and all rules preserve validity. We just give proofs for one of $A8$ (in one direction) and $R4$.

A8 Suppose $I((A \land B) \sqcup C, c) \neq 1$ in order to show $I((A \land C) \land (B \sqcup C), c) \neq 1$. Then $\exists a, b \in W$ such that $S_2 abc$, $I(A \land B, a) \neq 1$ and $I(C, b) \neq 1$. So $I(A, a) \neq 1$ or $I(B, a) \neq 1$. Since $S_2 abc$, we have $I(A \land C, c) \neq 1$ or $I(B \sqcup C, c) \neq 1$ by rule (\sqcup). Hence $I((A \land C) \land (B \sqcup C), c) \neq 1$ as required.

R4 Suppose $A \rightarrow B$ and $C \rightarrow D$ are $B_{\mathbb{T}_{\mathbb{L}}}^+$-valid in order to show that $A \sqcap C \rightarrow B \sqcap D$ is $B_{\mathbb{T}_{\mathbb{L}}}^+$-valid. Suppose also that $I(A \sqcap C, c) = 1$. It suffices to show $I(B \sqcap D, c) = 1$. Then $\exists a, b \in W$ such that $S_1 abc$, $I(A, a) = 1$ and $I(C, b) = 1$. Since $A \rightarrow B$ and $C \rightarrow D$ are $B_{\mathbb{T}_{\mathbb{L}}}^+$-valid, we have $I(B, a) = 1$ and $I(D, b) = 1$ by Lemma 2.2 (3). But $S_1 abc$, so by rule (\sqcap), we have $I(B \sqcap D, c) = 1$ as required.

2.4. Key notions for completeness

We establish completeness in the usual way. For any non-theorem A, we design a canonical model that refutes A. Most of the techniques come from Routley et al. (1982, Chapter 4), and Brady (2003, Chapter 8). In this section, we will give some definitions for any logic L in this paper.

First, we establish some conventions. With Σ the set of all formulas, we have for every $V, U \subseteq \Sigma$:

(1) U is L-derivable from V, written $V \vdash_L U$, if and only if for some A_1, \ldots, A_n in V and some B_1, \ldots, B_m in U, we have $\vdash_L A_1 \land \ldots \land A_n \rightarrow B_1 \lor \ldots \lor B_m$.

(2) An L-derivation of A from V, written $V \vdash_L A$, is a finite sequence of formulas A_1, \ldots, A_n, with $A_n = A$ such that each member A_i of the sequence either belongs to V or is obtained from predecessors in the sequence by adjunction or a provable L-implication (that is, in the latter case, A_i is obtained from A_j ($j < i$) since $\vdash_L A_j \rightarrow A_i$).

(3) An L-derivation of U from V is an L-derivation of some disjunction $B_1 \lor \ldots \lor B_m$ of formulas B_1, \ldots, B_m of U from V. Hence, U is L-derivable from V if and only if there is an L-derivation of U from V.

\(Y. Gao and J. Cheng \)

\(150 \)
(4) \(<V, U>\) is an \(L\)-maximal pair if and only if:

- \(V \cap U = \Sigma\)
- \(V \not\subseteq U\).

It is immediate that if \(<V, U>\) is an \(L\)-maximal pair, then \(V \cap U = \emptyset\).

Next, it is easy to see that if \(a \subseteq \Sigma\) and \(b = \Sigma - a\), then \(a\) satisfies the following \(a1, a2, a3\) separately if and only if \(b\) satisfies \(b1, b2, b3\) separately.

\(a1.\) If \(\vdash_L A \rightarrow B\) and \(A \in a\), then \(B \in a\).
\(a2.\) If \(A \in a\) and \(B \in a\), then \(A \land B \in a\).
\(a3.\) If \(A \lor B \in a\), then \(A \in a\) or \(B \in a\).
\(b1.\) If \(\vdash_L A \rightarrow B\) and \(B \in b\), then \(A \in b\).
\(b2.\) If \(A \land B \in b\), then \(A \in b\) or \(B \in b\).
\(b3.\) If \(A \in b\) and \(B \in b\), then \(A \lor B \in b\).

Then we define, for every \(a, b \subseteq \Sigma\):

(1) \(a\) is an \(L\)-theory if and only if it satisfies \(a1\) and \(a2\).
(2) An \(L\)-theory \(a\) is prime if and only if it satisfies \(a3\) also.
(3) \(a\) is an \(L\)-anti-dualtheory if and only if it satisfies \(a1\) and \(a3\).
(4) An \(L\)-anti-dualtheory \(a\) is prime if and only if it satisfies \(a2\) also.
(5) \(b\) is an \(L\)-dualtheory if and only if it satisfies \(b1\) and \(b3\).
(6) An \(L\)-dualtheory \(b\) is prime if and only if it satisfies \(b2\) also.

Thus, if \(a \subseteq \Sigma\) and \(b = \Sigma - a\):

- \(a\) is a prime \(L\)-theory if and only if \(a\) is a prime \(L\)-anti-dualtheory.
- \(a\) is an \(L\)-anti-dualtheory if and only if \(b\) is an \(L\)-dualtheory.
- \(a\) is a prime \(L\)-theory if and only if \(b\) is a prime \(L\)-dualtheory.

It is obvious that the set of all theorems of \(L\) is a theory. We will use \(l\) to denote this particular theory. In addition, an \(L\)-theory \(a\) is regular if and only if \(l \subseteq a\), that is, whenever \(\vdash_L A\), \(A \in a\).

In the following, the subscript ‘\(L\)’ and the prefix ‘\(L\)-’ will be omitted if system \(L\) is obvious.

Now we define four operations\(^\dagger\) on sets of formulas. For every \(a, b \subseteq \Sigma\):

\[
\begin{align*}
 a \oplus b &= \{B : \exists A \in b, A \rightarrow B \in a\} \\
 a \odot b &= \{A : \forall B, A \rightarrow B \in a \Rightarrow B \in b\}^\dagger \\
 a \ominus b &= \{C : \exists A \in a, \exists B \in b, \vdash_L A \lor B \rightarrow C\} \\
 a \otimes b &= \Sigma - \{C : \exists A \notin a, \exists B \notin b, \vdash_L C \rightarrow A \sqcup B\}.
\end{align*}
\]

We now give some propositions for \(\oplus, \odot, \ominus\) and \(\otimes\).

Proposition 2.4.

(1) If \(a, b\) are \(L\)-theories, then \(a \oplus b\) is an \(L\)-theory.
(2) If \(a\) is an \(L\)-theory and \(b\) is an \(L\)-anti-dualtheory, then \(a \odot b\) is an \(L\)-anti-dualtheory.
(3) If \(a, b\) are \(L\)-theories, then \(a \ominus b\) is an \(L\)-theory.
(4) If \(a, b\) are \(L\)-anti-dualtheories, then \(a \otimes b\) is an \(L\)-anti-dualtheory.

\(^\dagger\) The notation ‘\(\oplus\)’ and ‘\(\odot\)’ come from Brady (2003).
Proof. We will just show (4) as an example. First, suppose $C_2 \not\in a \odot b$ and $\vdash C_1 \rightarrow C_2$ in order to show $C_1 \not\in a \odot b$. Then $\exists A, \exists B \not\in a \odot b$ such that $\vdash C_2 \rightarrow A \sqcup B$. So $\vdash C_1 \rightarrow A \sqcup B$. Hence $C_1 \not\in a \odot b$ as required.

Now suppose $C_1, C_2 \not\in a \odot b$ in order to show $C_1 \lor C_2 \not\in a \odot b$. Then $\exists A_1, A_2 \not\in a, \exists B_1, B_2 \not\in b$ such that $\vdash C_1 \rightarrow A_1 \sqcup B_1$ and $\vdash C_2 \rightarrow A_2 \sqcup B_2$. Since $\vdash A_1 \sqcup B_1 \rightarrow (A_1 \sqcup B_1) \lor (A_2 \sqcup B_2)$, we have $\vdash C_1 \rightarrow (A_1 \sqcup B_1) \lor (A_2 \sqcup B_2)$. Similarly, $\vdash C_2 \rightarrow (A_1 \sqcup B_1) \lor (A_2 \sqcup B_2)$. So $\vdash C_1 \lor C_2 \rightarrow (A_1 \sqcup B_1) \lor (A_2 \sqcup B_2)$. Now, since $\vdash A_1 \rightarrow A_1 \lor A_2$ and $\vdash B_1 \rightarrow B_1 \lor B_2$, we have $\vdash A_1 \sqcup B_1 \rightarrow (A_1 \lor A_2) \sqcup (B_1 \lor B_2)$ by R5. Similarly, $\vdash A_2 \sqcup B_2 \rightarrow (A_1 \lor A_2) \sqcup (B_1 \lor B_2)$. So $\vdash (A_1 \sqcup B_1) \lor (A_2 \sqcup B_2) \rightarrow (A_1 \lor A_2) \sqcup (B_1 \lor B_2)$. Thus $\vdash C_1 \lor C_2 \rightarrow (A_1 \lor A_2) \sqcup (B_1 \lor B_2)$. Since a and b are L-anti-dualtheory, $A_1 \lor A_2 \not\in a$ and $B_1 \lor B_2 \not\in b$. So $C_1 \lor C_2 \not\in a \odot b$ as required.

Thus, if a and b are prime L-theories, then $a \oplus b$ and $a \odot b$ are L-theories; $a \odot b$ and $a \oplus b$ are L-anti-dualtheories.

Proposition 2.5. For every $a, b, c \subseteq \Sigma$, we have $a \oplus b \subseteq c$ if and only if $b \subseteq a \odot c$.

Proof. For the left-to-right direction, suppose $A \in b$, but $A \not\in a \odot c$. Then $\exists B \not\in c$ such that $A \rightarrow B \in a$. Since $A \in b$, we have $B \in a \odot b$; and since $a \odot b \subseteq c$, we have $B \in c$, giving a contradiction. Thus $A \in a \odot c$.

For the right-to-left direction, suppose $B \in a \odot b$ in order to show $B \in c$. Then $\exists A \in b$ such that $A \rightarrow B \in a$. Since $b \subseteq a \odot c$, we have $A \in a \odot c$, so $B \in c$ as required.

We now define ternary relations R_1, R_2, S_1, S_2 on sets of formulas. For every $a, b, c \subseteq \Sigma$:

- $R_1 abc$ if and only if $a \odot b \subseteq c$, that is, for every A, B, if $A \rightarrow B \in a$ and $A \in b$, then $B \in c$.
- $R_2 abc$ if and only if $c \subseteq a \odot b$, that is, for every A, B, if $A \rightarrow B \in a$ and $B \not\in b$, then $A \not\in c$.
- $S_1 abc$ if and only if $a \odot b \subseteq c$, that is, for every A, B, C, if $A \in a, B \in b$ and $\vdash_L A \sqcup B \rightarrow C$, then $C \in c$.
- $S_2 abc$ if and only if $c \subseteq a \odot b$, that is, for every A, B, C, if $A \not\in a, B \not\in b$ and $\vdash_L C \rightarrow A \sqcup B$, then $C \not\in c$.

Thus, since $a \odot b \subseteq c$ if and only if $b \subseteq a \odot c$, it is immediate that $R_1 abc$ if and only if $R_2 abc$.

Please note that since $\vdash_L A \sqcup B \rightarrow A \sqcup B$, $\vdash_L A \sqcup B \rightarrow A \sqcup B$, it is easy to see that for every $a, b, c \subseteq \Sigma$, and every formula A, B:

- If $S_1 abc$, $A \in a$ and $B \in b$, then $A \sqcup B \in c$.
- If $S_2 abc$, $A \not\in a$ and $B \not\in b$, then $A \sqcup B \not\in c$.

2.5. Lemmas for completeness

We begin by giving some results (Lemmas 2.6–2.8), which are either proved in Routley et al. (1982, Pages 307–308)) or are easy to obtain.

Lemma 2.6. If $< V, U >$ is an L-maximal pair, then V is a prime L-theory, and U is a prime L-dualtheory.
Lemma 2.7 (Extension Lemma). Let \(V \) and \(U \) be sets of formulas such that \(V \not
subseteq L U \). Then there is an \(L \)-maximal pair \(\langle V', U' \rangle \) with \(V \subseteq V' \) and \(U \subseteq U' \).

Lemma 2.8 (Priming Lemma 1). Let \(V \) be an \(L \)-theory, \(U \) be closed under disjunction, and \(V \cap U = \emptyset \). Then there is an \(L \)-theory \(V' \) such that:

1. \(V \subseteq V' \);
2. \(V' \cap U = \emptyset \); and
3. \(V' \) is prime.

We also have Priming Lemma 2, which is similar to Priming Lemma 1.

Lemma 2.9 (Priming Lemma 2). Let \(V \) be closed under conjunction, \(U \) be an \(L \)-dualtheory, and \(V \cap U = \emptyset \). Then there is an \(L \)-dualtheory \(U' \) such that:

1. \(U \subseteq U' \);
2. \(V \cap U' = \emptyset \); and
3. \(U' \) is prime.

Proof. \(V \not\subseteq L U \) as otherwise there would be \(A_1, \ldots, A_n \in V \) such that \(A_1 \land \cdots \land A_n \in V \cap U \), since \(U \) is an \(L \)-dualtheory. By Lemma 2.7, there is an \(L \)-maximal pair \(\langle V', U' \rangle \) with \(V \subseteq V' \) and \(U \subseteq U' \), and the result then follows by Lemma 2.6.

The following results are proved in Routley et al. (1982, Page 309)†.

Corollary 2.10.

1. If \(A \) is a non-theorem of \(L \), then there is a prime regular \(L \)-theory \(o_c \) such that \(A \notin o_c \).
2. If \(a, b \) are \(L \)-theories, \(c \) is an \(L \)-anti-dualtheory and \(R_1abc \), then there is a prime \(L \)-theory \(a' \) such that \(a \subseteq a' \) and \(R_1a'b'c \).
3. If \(a, b \) are \(L \)-theories, \(c \) is an \(L \)-anti-dualtheory and \(R_1abc \), then there is a prime \(L \)-theory \(b' \) such that \(b \subseteq b' \) and \(R_1ab'c \).
4. If \(a, b, c \) are \(L \)-theories, \(R_1abc \) and \(C \notin c \), then there are prime \(L \)-theories, \(b' \), \(c' \), such that \(b \subseteq b' \), \(C \notin c' \) and \(R_1ab'c' \).

We now prove several corollaries of Lemmas 2.8 and 2.9.

Corollary 2.11.

1. If \(a, c \) are \(L \)-theories, \(b \) is an \(L \)-anti-dualtheory and \(R_2abc \), then there is a prime \(L \)-theory \(a' \) such that \(a \subseteq a' \) and \(R_2a'b'c \).
2. If \(a, c \) are \(L \)-theories, \(b \) is an \(L \)-anti-dualtheory and \(R_2abc \), then there is a prime \(L \)-theory \(b' \) such that \(b' \subseteq b \) and \(R_2ab'c \).

† Note that the form of (2) and (3) in Corollary 2.10 is a little different from that given in Routley et al. (1982), where \(c \) is required to be a prime \(L \)-theory. In fact, it is sufficient to require that \(c \) is only an \(L \)-anti-dualtheory for the proof to go through.
Proof. Since R_2abc if and only if R_1abc, (1) here is equivalent to Corollary 2.10 (2). Hence, we just give the proof for (2).

Set $V = \{ B : \exists A \in c, A \to B \in a \}$. We want to prove:

(a) V is closed under conjunction.
(b) $\Sigma - b$ is disjoint from V.

(a) Suppose $B_1, B_2 \in V$. Then $\exists A_1, A_2 \in c$, $A_1 \to B_1 \in a$ and $A_2 \to B_2 \in a$. Since $\vdash A_1 \land A_2 \to A_1$, we have $\vdash (A_1 \to B_1) \to (A_1 \land A_2 \to B_1)$, so $A_1 \land A_2 \to B_1 \in a$. Similarly, $A_1 \land A_2 \to B_2 \in a$, so $(A_1 \land A_2 \to B_1) \land (A_1 \land A_2 \to B_2) \in a$. By

$$\vdash (A_1 \land A_2 \to B_1) \land (A_1 \land A_2 \to B_2) \to (A_1 \land A_2 \to B_1 \land B_2),$$

we have $A_1 \land A_2 \to B_1 \land B_2 \in a$. Since c is an L-theory, $A_1 \land A_2 \in c$. So $B_1 \land B_2 \in V$ as required.

(b) To show a contradiction, suppose $\exists B \in \Sigma - b$, that is, $B \notin b$ and $B \in V$. Then $\exists A \in c$ such that $A \to B \in a$. But R_2abc, so $A \notin c$, which gives a contradiction.

Since b is an L-anti-dualtheory, $\Sigma - b$ is an L-dualtheory. Hence by (a) and (b), Lemma 2.9 applies to provide a prime L-dualtheory b'' disjoint from V with $\Sigma - b \subseteq b''$. Let $b' = \Sigma - b''$. Then b' is a prime L-anti-dualtheory, that is, a prime L-theory, and $b' \subseteq b$. Next we prove $R_2ab'c$. Suppose $A \to B \in a$ and $B \notin b'$, that is, $B \in b''$. Since b'' is disjoint from V, we have $A \notin c$, so $R_2ab'c$. \qed

Corollary 2.12.

(1) If a, b are L-theories, c is an L-anti-dualtheory and S_1abc, then there is a prime L-theory a' such that $a \subseteq a'$ and $S_1a'b'c$.

(2) If a, b are L-theories, c is an L-anti-dualtheory and S_1abc, then there is a prime L-theory b' such that $b \subseteq b'$ and $S_1ab'c$.

Proof. We give the proof for (1); the proof for (2) is similar.

Set $U = \{ A : \exists B \in b, \exists C \notin c, A \land B \to C \}$. We want to prove:

(a) U is closed under disjunction.
(b) a is disjoint from U.

(a) Suppose $A_1, A_2 \in U$. Then $\exists B_1, B_2 \in b$, $\exists C_1, C_2 \notin c$ such that $\vdash A_1 \land B_1 \to C_1$ and $\vdash A_2 \land B_2 \to C_2$. Since $\vdash B_1 \land B_2 \to B_1$, we have $\vdash A_1 \land (B_1 \land B_2) \to A_1 \land B_1$ by R4. So $\vdash A_1 \land (B_1 \land B_2) \to C_1$. Since $\vdash C_1 \to C_1 \lor C_2$, we have $\vdash A_1 \land (B_1 \land B_2) \to C_1 \lor C_2$. Similarly, $\vdash A_2 \land (B_1 \land B_2) \to C_1 \lor C_2$. So

$$\vdash (A_1 \land (B_1 \land B_2)) \lor (A_2 \land (B_1 \land B_2)) \to C_1 \lor C_2.$$

By A7,

$$\vdash (A_1 \lor A_2) \land (B_1 \land B_2) \to (A_1 \land (B_1 \land B_2)) \lor (A_2 \land (B_1 \land B_2)).$$

So $\vdash (A_1 \lor A_2) \land (B_1 \land B_2) \to C_1 \lor C_2$. Since b is an L-theory, $B_1 \land B_2 \in b$. And since c is an L-anti-dualtheory, $C_1 \lor C_2 \notin c$. Hence $A_1 \lor A_2 \in U$. \qed
(b) To show a contradiction, suppose $\exists A \in a$ and $A \in U$. Then $\exists B \in b$, $\exists C \notin c$ such that $\vdash A \sqcap B \rightarrow C$. But S_1abc, so $C \in c$, which gives a contradiction.

Hence, by (a) and (b), Lemma 2.8 applies to provide a prime L-theory a' disjoint from U with $a \subseteq a'$. Next we prove $S_1a'bc$. Suppose $A \in a'$, $B \in b$ and $\vdash A \sqcap B \rightarrow C$. Since a' is disjoint from U, we have $C \in c$. So $S_1a'bc$.

\[\square\]

Corollary 2.13.

(1) If a,b are L-anti-dualtheories, c is an L-theory and S_2abc, then there is a prime L-anti-dualtheory a' such that $a' \subseteq a$ and $S_2a'bc$.

(2) If a,b are L-anti-dualtheories, c is an L-theory and S_2abc, then there is a prime L-anti-dualtheory b' such that $b' \subseteq b$ and $S_2ab'c$.

Proof. We just give proof for (1); the proof for (2) is similar.

Set $V = \{A : \exists B \notin b, \exists C \in c, \vdash C \rightarrow A \sqcup B\}$. We want to prove:

(a) V is closed under conjunction.

(b) $\Sigma - a$ is disjoint from V.

(a) Suppose $A_1, A_2 \in V$. Then $\exists B_1, B_2 \notin b, \exists C_1, C_2 \in c$ such that $\vdash C_1 \rightarrow A_1 \sqcup B_1$ and $\vdash C_2 \rightarrow A_2 \sqcup B_2$. Since $\vdash B_1 \rightarrow B_1 \sqcup B_2$, we have $\vdash A_1 \sqcup B_1 \rightarrow A_1 \sqcup (B_1 \sqcup B_2)$ by R5. So $\vdash C_1 \rightarrow A_1 \sqcup (B_1 \sqcup B_2)$. Since $\vdash C_1 \sqcap C_2 \rightarrow C_1$, we have $\vdash C_1 \sqcap C_2 \rightarrow A_1 \sqcup (B_1 \sqcup B_2)$. Similarly, $\vdash C_1 \sqcap C_2 \rightarrow A_2 \sqcup (B_1 \sqcup B_2)$. So $\vdash C_1 \sqcap C_2 \rightarrow (A_1 \sqcup (B_1 \sqcup B_2)) \sqcap (A_2 \sqcup (B_1 \sqcup B_2))$.

By A8,

$\vdash (A_1 \sqcup (B_1 \sqcup B_2)) \sqcap (A_2 \sqcup (B_1 \sqcup B_2)) \rightarrow (A_1 \sqcup A_2) \sqcup (B_1 \sqcup B_2)$.

So $\vdash C_1 \sqcap C_2 \rightarrow (A_1 \sqcup A_2) \sqcup (B_1 \sqcup B_2)$. Since b is an L-anti-dualtheory, $B_1 \sqcup B_2 \notin b$. And since c is an L-theory, $C_1 \sqcup C_2 \in c$. Hence $A_1 \sqcup A_2 \in V$.

(b) To show a contradiction, suppose $\exists A \in \Sigma - a$, that is, $A \notin a$ and $A \in V$. Then $\exists B \notin b, \exists C \in c$ such that $\vdash C \rightarrow A \sqcup B$. But S_2abc, so $C \notin c$, which gives a contradiction.

Since a is an L-anti-dualtheory, $\Sigma - a$ is an L-dualtheory. Hence by (a) and (b), we can use Lemma 2.9 to provide a prime L-dualtheory a'' disjoint from V with $\Sigma - a \subseteq a''$. Let $a' = \Sigma - a''$. Then a' is a prime L-theory, that is, prime L-anti-dualtheory, and $a' \subseteq a$. Next we prove $S_2a'bc$. Suppose $A \notin a'$, that is, $A \in a''$, $B \notin b$ and $\vdash C \rightarrow A \sqcup B$. Since a'' is disjoint from V, we have $C \notin c$, so $S_2a'bc$.

\[\square\]

Lemma 2.14.

(1) Let a be a prime L-theory and $A \rightarrow B \notin a$. Then there are prime L-theories, b', c', such that $R_1ab'c'$, $A \in b'$, and $B \notin c'$.

(2) Let c be a prime L-theory and $A \sqcap B \in c$. Then there are prime L-theories, a', b', such that $S_1a'bc$, $A \in a'$, and $B \in b'$.

(3) Let c be a prime L-theory and $A \sqcup B \notin c$. Then there are prime L-theories, a', b', such that $S_2a'bc$, $A \notin a'$, and $B \notin b'$.

Proof.

(1) Suppose a is a prime L-theory such that $A \rightarrow B \notin a$. Let $b = \{A' \vdash A \rightarrow A'\}$. We will show that b is an L-theory. Suppose that $\vdash A' \rightarrow A_1'$ and $A_1' \in b$. Then $\vdash A \rightarrow A_1'$, so
Finally, p_4 et al. are immediate. By the corresponding proof in Routley, we prove that A is a prime theory by Proposition 2.4. Also, $R_{1}abc$. It is obvious that $A \in b$. Moreover, $B \not\in c$. Otherwise, if $A' \in b$ and $A'' \in b$. Then, $\vdash A \rightarrow A'$ and $\vdash (A' \rightarrow B) \rightarrow (A \rightarrow B)$. So $A \rightarrow B \in a$, which gives a contradiction. Hence, by Corollary 2.10 (4), there are prime L-theories b', c' such that $A \in b', B \not\in c'$ and $R_{1}abc$.

(2) Suppose c is a prime L-theory such that $A \land B \in c$. Let $a = \{A' : A \rightarrow A'\}$ and $b = \{B' : B \rightarrow B'\}$. Then a, b are L-theories by the same proof as in (1). It is immediate that $A \in a$ and $B \in b$. To show $S_{1}abc$, suppose $A' \in a, B' \in b$ and $\vdash A' \land B' \rightarrow C$. Then, $\vdash A \rightarrow A'$ and $\vdash B \rightarrow B'$. So $\vdash A \land B \rightarrow A' \land B'$ by R_{4}. Then $\vdash A \land B \rightarrow C$. But $A \land B \in c$, so $C \in c$. Thus $S_{1}abc$. By Corollary 2.12, there are prime L-theories a', b' such that $A \in a', B \in b'$ and $S_{2}abc$.

(3) Suppose c is a prime L-theory such that $A \lor B \not\in c$. Let $a'' = \{A' : A \rightarrow A'\}$ and $b'' = \{B' : B \rightarrow B'\}$. Then a'', b'' are L-dual theories. For a'', suppose that $\vdash A' \rightarrow A_1$ and $A_2 \in b''$. Then $\vdash A_1 \rightarrow A$. So $\vdash A_1 \rightarrow A$. Hence, $A_1 \in a''$. Now suppose $A_1, A_2 \in b''$. Then $\vdash A_1 \rightarrow A$ and $\vdash A_2 \rightarrow A$. Hence $\vdash A_1 \lor A_2 \rightarrow A$. So $A_1 \lor A_2 \in a''$. Thus a'' is an L-dual theory. Similarly, b'' is also an L-dual theory. Let $a = \Sigma - a''$ and $b = \Sigma - b''$. Then, a, b are L-anti-dual theories. It is immediate that $A \not\in a$ and $B \not\in b$. To show $S_{2}abc$, suppose $A' \not\in a, B' \not\in b$ and $\vdash C \rightarrow A' \lor B'$. Then $\vdash A' \rightarrow A$ and $\vdash B' \rightarrow B$. So $\vdash A' \lor B' \rightarrow A \lor B$ by R_{5}, and thus $\vdash C \rightarrow A \lor B$. But $A \lor B \not\in c$, so $C \not\in c$. Thus $S_{2}abc$. Then, by Corollary 2.13, there are prime L-theories a', b' such that $A \not\in a', B \not\in b'$ and $S_{2}abc$.

2.6. Completeness

For any non-theorem A of L, by Corollary 2.10 (1), there is a prime regular L-theory o_e such that $A \not\in o_e$. Thus we design a canonical model for L,

$$< o_e, W_e, O_e, R_1, R_2, S_1, S_2, I >$$

where W_e is the class of all prime L-theories, that is, the class of all prime L-anti-dual theories; O_e is the subset of W_e such that $x \in O_e$ if and only if x is regular; R_1, R_2, S_1 and S_2 are canonical defined as above (restricted to W_e); and I is defined, for every prime theory x and formula A, as $I(A, x) = 1$ if and only if $A \in x$.

Theorem 2.15. If A is B^+_L-valid, then A is a theorem of B^+_L.

Proof. We prove the contrapositive. Given a non-theorem A, there is a canonical model $< o_e, W_e, O_e, R_1, R_2, S_1, S_2, I >$ for B^+_L. We show that the canonical model is really a B^+_L-model. It suffices to show that p_1–7 hold, and that I satisfies the Atomic Hereditary Condition and the Evaluation Rules. p_1 and the Atomic Hereditary Condition are immediate. By the corresponding proof in Routley et al. (1982, Page 312), we can prove that $a \leq b$ if and only if $a \subseteq b$. Thus p_2 is obvious. p_3 was shown by Proposition 2.5. Finally, p_4–7 are immediate from the canonical definitions of R_1, R_2, S_1 and S_2.

Now we show $a \leq b$ if and only if $a \subseteq b$.

The following are some additional axioms and rules that can be added to Semantics for a basic relevant logic (and some of its extensions) models.

For the left-to-right direction, since \(a \leq b \), there is an \(x \) such that \(x \in O_c \), that is, \(x \) is regular, and \(R_1 x a b \). Hence, since \(A \rightarrow A \in x \), by the canonical definition of \(R_1 \), \(A \in b \) whenever \(A \in a \). So \(a \leq b \).

For the right-to-left direction, suppose \(a \leq b \). Then it is easy to see that \(R_1 x a b \). Since \(l \) is an \(L \)-theory, by Corollary 2.10 (2), \(l \) can be replaced by a prime theory \(x \) such that \(l \leq x \) and \(R_1 x a b \). Thus \(x \) is regular, that is, \(x \in O_c \). So \(a \leq b \).

Next we show that \(I \) satisfies the Evaluation Rules, and hence the canonical model is a \(B^+_{\frak I} \)-model. It follows that \(A \) is not valid on \(< o_c, W_c, O_c, R_1, R_2, S_1, S_2, I > \). Hence \(A \) is not \(B^+_{\frak I} \)-valid. The cases for \(\land \) and \(\lor \) are immediate from the definition of a prime theory. Here we will just give proofs for the connectives \(\rightarrow, \sqcap \) and \(\sqcup \).

(\(\rightarrow \)) It suffices to prove that \(A \rightarrow B \in a \) if and only if for every \(b, c \in W_c \), if \(R_1 a b c \) and \(A \in b \), then \(B \in c \). But this is guaranteed by Lemma 2.14 and the canonical definition of \(R_1 \).

(\(\sqcap \)) It suffices to prove that \(A \sqcap B \in c \) if and only if for some \(a, b \in W_c \), we have \(S_1 a b c \), \(A \in a \) and \(B \in b \). But this is guaranteed by Lemma 2.14 and the canonical definition of \(S_1 \).

(\(\sqcup \)) It suffices to prove that \(A \sqcup B \not\in c \) if and only if for some \(a, b \in W_c \), we have \(S_2 a b c \), \(A \not\in a \) and \(B \not\in b \). But this is guaranteed by Lemma 2.14 and the canonical definition of \(S_2 \).

Hence the result is proved.

3. Extensions of \(B^+_{\frak I} \)

The following are some additional axioms and rules that can be added to \(B^+_{\frak I} \) to obtain stronger systems. For a given postulate \(S_i, s_i \) is the corresponding semantic condition on models.

\[
\begin{align*}
S1 & \quad A \sqcap B \rightarrow B \sqcap A \\
S2 & \quad A \sqcup B \rightarrow B \sqcup A \\
S3 & \quad (A \rightarrow B) \rightarrow (A \sqcap C \rightarrow B \sqcap C) \\
S4 & \quad (A \rightarrow B) \rightarrow (C \sqcap A \rightarrow C \sqcap B) \\
S5 & \quad (A \rightarrow B) \rightarrow (A \sqcup C \rightarrow B \sqcup C) \\
S6 & \quad (A \rightarrow B) \rightarrow (C \sqcup A \rightarrow C \sqcup B) \\
S7 & \quad (A \rightarrow (C \sqcap B \rightarrow D)) \rightarrow (A \sqcap B \rightarrow C \sqcap D) \\
S8 & \quad (A \rightarrow (C \sqcap B \rightarrow D)) \rightarrow (A \sqcup B \rightarrow C \sqcup D) \\
S9 & \quad (A \rightarrow (B \rightarrow C)) \rightarrow (A \rightarrow C) \\
S10 & \quad (B \rightarrow C) \sqcap (A \rightarrow B) \rightarrow (A \rightarrow C) \\
S11 & \quad A \sqcap (A \rightarrow B) \rightarrow B \\
S12 & \quad A \rightarrow (B \rightarrow A \sqcap B) \\
S13 & \quad (A \rightarrow (B \rightarrow C)) \rightarrow (A \sqcap B \rightarrow C) \\
S14 & \quad (A \sqcap B \rightarrow C) \rightarrow (A \rightarrow (B \rightarrow C)) \\
S15 & \quad A \land B \rightarrow A \sqcap B \\
S16 & \quad A \sqcup B \rightarrow A \lor B \\
S17 & \quad A \sqcup B \rightarrow A \sqcap B \\
S1 \; S1 & \quad S_1 a b c \Rightarrow S_1 b a c \\
S2 & \quad S_2 a b c \Rightarrow S_2 b a c \\
S3 & \quad R_1 (S_1 d e)c \Rightarrow S_1 (R_1 a d)e c \\
S4 & \quad R_1 (S_1 d e)c \Rightarrow S_1 (R_1 a d)e c \\
S5 & \quad R_2 (S_2 d e)c \Rightarrow S_2 (R_2 a d)e c \\
S6 & \quad R_2 (S_2 d e)c \Rightarrow S_2 (R_2 a d)e c \\
S7 & \quad R_1 (S_1 a b)(S_1 f g)e \Rightarrow S_1 (R_1 a f)(R_1 b g)e \\
S8 & \quad R_2 (S_1 a b)(S_2 f g)e \Rightarrow S_2 (R_2 a f)(R_2 b g)e \\
S9 & \quad R_1 (S_1 a b)d e \Rightarrow R_1 (b(a d)e) \\
S10 & \quad R_1 (S_1 a b)d e \Rightarrow R_1 (b(a d)e) \\
S11 & \quad S_1 a b c \Rightarrow R_1 b a c \\
S12 & \quad R_1 a b c \Rightarrow S_1 a b c \\
S13 & \quad R_1 (S_1 d e)c \Rightarrow R_1 (a d)c e \\
S14 & \quad R_1 (a b)d e \Rightarrow R_1 (a S_1 b d)e \\
S15 & \quad S_1 a a a \\
S16 & \quad S_2 a a a \\
S17 & \quad \exists x (S_1 a b x \text{ and } S_2 d e x) \Rightarrow a \leq d \text{ or } b \leq e
\end{align*}
\]
S18 $A \rightarrow (B \rightarrow C) \implies A \sqcap B \rightarrow C$
S19 $A \sqcap B \rightarrow C \implies A \rightarrow (B \rightarrow C)$
\hspace{1em} $s18 S_1abc \Rightarrow R_1abc$ \hspace{1em} $s19 R_1abc \Rightarrow S_1abc$.

Theorem 3.1. For each row in the list above, the extension of $B^+_{\mathcal{L}_1}$ obtained by adding axiom or rule Si is sound and complete with respect to the class of $B^+_{\mathcal{L}_1}$-models

$$<o, W, O, R_1, R_2, S_1, S_2, I>$$

that satisfy si.

Proof. For soundness, we take an arbitrary model and assume that it satisfies si. Then we demonstrate that Si (as an axiom) is valid or Si (as a rule) preserves validity in this model. Completeness is proved by showing that the canonical model for an extension with Si must satisfy si. We will give proofs for some rows as examples.

We will sketch the approach for completeness. In many cases, we search for prime \mathcal{L}-theories satisfying some specific conditions. In general, we first construct appropriate \mathcal{L}-theories or \mathcal{L}-anti-dualtheories using operations \oplus, \otimes, \ominus or \odot, from given prime \mathcal{L}-theories, and then apply Corollaries 2.10–13 to obtain the required prime \mathcal{L}-theories.

1. For soundness, suppose $I(A \sqcap B, c) = 1$ in order to show $I(B \sqcap A, c) = 1$. Then $\exists a, b \in W$ such that $S_1abc, I(A, a) = 1$ and $I(B, b) = 1$. Since S_1abc, we have S_1bac by $s1$. So $I(B \sqcap A, c) = 1$ as required.

For completeness, assume that $S1$ holds. Let S_1abc in order to show S_1bac. Suppose $B \in b, A \in a$ and $\vdash B \sqcap A \rightarrow C$. It suffices to show $C \in c$. By $S1$, we have $\vdash A \sqcap B \rightarrow C$. But S_1abc, so $C \in c$ as required.

5. For soundness, suppose $I(A \rightarrow B, a) = 1$ in order to show $I(A \sqcap C \rightarrow B \sqcap C, a) = 1$. Suppose also that R_2abc and $I(B \sqcup C, b) \neq 1$. It suffices to show $I(A \sqcup C, c) \neq 1$. Then $\exists d, e \in W$ such that $S_2deb, I(B, d) \neq 1$ and $I(C, e) \neq 1$. Since S_2deb and R_2abc, we have $R_2a(S_2de)c$. So, by $s5$, we have $S_5(R_2ad)ec$, that is, $\exists x \in W$ such that R_2adx and S_2xec. Since R_2adx, we have $I(A, x) \neq 1$. And since S_2xec, we have $I(A \sqcup C, c) \neq 1$ as required.

For completeness, assume that $S5$ holds. Suppose that $R_2a(S_2de)c$ in order to show $S_2(S_2de)c$. Then $\exists x \in W$, such that S_2dex and R_2axc. Let $y = a \otimes d$. It is immediate that R_2ady and that y is an \mathcal{L}-anti-dualtheory. We show S_2yec. Suppose that $A \notin y, C \notin e$ and $\vdash E \rightarrow A \sqcup C$. It suffices to show $E \notin c$. Since $A \notin y$, we have $\exists B \notin d$ such that $A \rightarrow B \in a$. Then $A \sqcup C \rightarrow B \sqcup C \in a$ by $S5$. Since S_2dex, we have $B \sqcup C \notin x$; and since R_2axc, we have $A \sqcup C \notin c$. So $E \notin c$ as required. Thus S_2yec. Now we can use Corollary 2.13 to provide a prime \mathcal{L}-theory y' such that $y' \subseteq y$ and $S_2y'ec$. It is immediate that R_2ady'. So we have $S_2(R_2ad)ec$.

7. For soundness, suppose $I((A \rightarrow C) \sqcap (B \rightarrow D), c) = 1$ in order to show $I(A \sqcap B \rightarrow C \sqcap D, c) = 1$. Then $\exists a, b \in W$ such that $S_1abc, I(A \rightarrow C, a) = 1$ and $I(B \rightarrow D, b) = 1$. Suppose also that R_1cde and $I(A \sqcap B, d) = 1$. It suffices to show $I(C \sqcap D, e) = 1$. Then $\exists f, g \in W$ such that $S_1fgd, I(A, f) = 1$ and $I(B, g) = 1$. Since S_1abc, S_1fgd and R_1cde, we have $R_1(S_1ab)(S_1fg)e$. So, by $s7$, we have $S_1(R_1af)(R_1bg)e$, that is, $\exists x, y \in W$ such that R_1afx, R_1bgx and S_1xye. Since R_1afx, we have $I(C, x) = 1$. And since R_1bgx, we have $I(D, y) = 1$. Finally, since S_1xye, we have $I(C \sqcap D, e) = 1$ as required.
For completeness, assume that S7 holds. Suppose $R_1(S_1ab)(S_1fg)e$ in order to show $S_1(R_1af)(R_1bg)e$. Then $\exists x_1, x_2 \in W_c$ such that S_1abx_1, S_1fgx_2 and $R_1x_1x_2e$. Let $y_1 = a \oplus f$ and $y_2 = b \oplus g$. It is immediate that R_1afy_1 and R_1bgy_2, and that y_1, y_2 are L-theories. We show $S_1y_1y_2e$. Suppose that $C \in y_1$, $D \in y_2$ and $\vdash C \cap D \rightarrow E$. It suffices to show $E \in e$. Since $C \in y_1$, we have $\exists A \in f$ such that $A \rightarrow C \in a$; and since $D \in y_2$, we have $\exists B \in g$ such that $B \rightarrow D \in b$. Then, since S_1abx_1, we have $(A \rightarrow C) \cap (B \rightarrow D) \in x_1$. And since S_1fgx_2, we have $A \cap B \in x_2$. So $A \cap B \rightarrow C \cap D \in x_1$ by S7. Since $R_1x_1x_2e$, we have $C \cap D \in e$, so $E \in e$ as required. Thus $S_1y_1y_2e$. Now we can use Corollary 2.12 to provide prime L-theories y'_1, y'_2 such that $y_1 \subseteq y'_1$, $y_2 \subseteq y'_2$ and $S_1y'_1y'_2e$. It is immediate that $R_1afy'_1$ and $R_1bgy'_2$. So we have $S_1(R_1af)(R_1bg)e$.

9. For soundness, suppose $I((A \rightarrow B) \cap (B \rightarrow C), c) = 1$ in order to show $I(A \rightarrow C, c) = 1$. Then $\exists a, b \in W$ such that S_1abc, $I(A \rightarrow B, a) = 1$ and $I(B \rightarrow C, b) = 1$. Suppose also that R_1cde and $I(A, d) = 1$. It suffices to show $I(C, e) = 1$. Since S_1abc and R_1cde, we have $R_1(S_1ab)de$. So, by S9, $R_1b(ade)$, that is, $\exists x \in W$ such that R_1adx and R_1bxe. Since R_1adx, we have $I(B, x) = 1$; and since R_1bxe, we have $I(C, e) = 1$ as required.

For completeness, assume that S9 holds. Suppose that $R_1(S_1ab)de$ in order to show $R_1b(ade)$. Then $\exists x \in W_c$ such that S_1abx and R_1xde. Let $y = a \oplus d$. It is immediate that R_1ady and that y is an L-theory. We show R_1bye. Suppose that $B \rightarrow C \in b$ and $B \in y$. It suffices to show $C \in e$. Since $B \in y$, we have $\exists A \in d$ such that $A \rightarrow B \in a$. Then, by S_1abx, we have $(A \rightarrow B) \cap (B \rightarrow C) \in x$. So $A \rightarrow C \in x$ by S9; and since R_1xde, we have $C \in e$ as required. Thus R_1bye. Now we can use Corollary 2.10 to provide a prime L-theory y' such that $y \subseteq y'$ and $R_1by'e$. It is immediate that R_1ady'. So we have $R_1b(ade)$.

12. For soundness, suppose $I(A, a) = 1$ in order to show $I(B \rightarrow A \cap B, a) = 1$. Suppose also that R_1abc and $I(B, b) = 1$. It suffices to show $I(A \cap B, c) = 1$. Since R_1abc, we have S_1abc by S12. So $I(A \cap B, c) = 1$ as required.

For completeness, assume that S12 holds. Let R_1abc in order to show S_1abc. Suppose also that $A \in a$, $B \in b$ and $\vdash A \cap B \rightarrow C$. It suffices to show $C \in c$. Then $\vdash (B \rightarrow A \cap B) \rightarrow (B \rightarrow C)$. Since $A \in a$, we have $B \rightarrow A \cap B \in a$ by S12. So $B \rightarrow C \in a$. But R_1abc, so $C \in c$ as required.

14. For soundness, suppose $I(A \cap B \rightarrow C, a) = 1$ in order to show $I(A \rightarrow (B \rightarrow C), a) = 1$. Suppose also that R_1abc and $I(A, b) = 1$ in order to show $I(B \rightarrow C, c) = 1$. Finally, suppose R_1cde and $I(B, d) = 1$. It suffices to show $I(C, e) = 1$. Since R_1abc and R_1cde, we have $R_1(ab)de$. So, by S14, we have $R_1a(S_1bd)e$, that is, $\exists x \in W$ such that S_1bdx and R_1axe. Since S_1bdx, we have $I(A \cap B, x) = 1$. And since R_1axe, we have $I(C, e) = 1$ as required.

For completeness, assume that S14 holds. Suppose $R_1(ab)de$ in order to show $R_1a(S_1bd)e$. Then $\exists x \in W_c$ such that R_1abx and R_1xde. Let $y = b \oplus d$. It is immediate that S_1bdy and that y is an L-theory. We will show R_1aye. Suppose that $D \rightarrow C \in a$ and $D \in y$. It suffices to show $C \in e$. Since $D \in y$, we have $\exists A \in b$ and $\exists B \in d$ such that $\vdash A \cap B \rightarrow D$. Then $\vdash (D \rightarrow C) \rightarrow (A \cap B \rightarrow C)$. So $A \cap B \rightarrow C \in a$, and thus $A \rightarrow (B \rightarrow C) \in a$ by S14. Since R_1abx, we have $B \rightarrow C \in x$, and since R_1xde, we have $C \in e$ as required. Thus R_1aye. Now we can use Corollary 2.10 to provide a
prime L-theory y′ such that y ⊆ y′ and R₁ay′e. It is immediate that S₁bdy′. So we have R₁aS₁(bd)e.

15. For soundness, suppose I(A ∧ B, a) = 1 in order to show I(A ⊨ B, a) = 1. Then I(A, a) = 1 and I(B, a) = 1. Since S₁aaa, we have I(A ⊨ B, a) = 1 as required.

For completeness, assume that S₁⁰ holds. Suppose A, B ∈ a and ⊢ A ⊨ B → C. It suffices to show C ∈ a. By S₁⁰, we have ⊢ A ∧ B → A ⊨ B. So ⊢ A ∧ B → C. Since A, B ∈ a, we have A ∧ B ∈ a. Hence C ∈ a as required.

16. For soundness, suppose I(A ⊨ B, x) = 1, but I(A ⊨ B, x) ≠ 1. Then ∃a, b ∈ W such that S₁abi, I(A, a) = 1 and I(B, b) = 1. Also, ∃d, e ∈ W such that S₂dci, I(A, d) ≠ 1 and I(B, e) ≠ 1. By s₁⁷, we have a ≤ d or b ≤ e. So I(A, d) = 1 or I(B, e) = 1 by Lemma 2.1. But this gives a contradiction. Hence I(A ⊨ B, x) = 1.

For completeness, assume that S₁⁰ holds. Let S₁abi and S₂dci in order to show a ⊆ d or b ⊆ e. Suppose a ∉ d and b ∉ e. Then ∃A ∈ a but A ∉ d, and ∃B ∈ b but B ∉ e. Since S₁abi, we have A ⊨ B ∈ x. And since S₂dci, we have A ∪ B ∉ x. But this gives a contradiction by S₁⁷. Hence a ⊆ d or b ⊆ e.

17. For soundness, suppose A → (B → C) is L-valid in order to show A ⊨ B → C is L-valid also. Suppose also that I(A ⊨ B, c) = 1. It suffices to show I(C, c) = 1. Then ∃a, b ∈ W such that S₁abi, I(A, a) = 1 and I(B, b) = 1. Since A → (B → C) is L-valid, we have I(B → C, a) = 1 by Lemma 2.2 (3). But since S₁abi, we have R₁abi by s₁⁸, so I(C, c) = 1 as required.

For completeness, assume that S₁⁰ holds. Let S₁abi in order to show R₁abi. Suppose A → B ∈ a and A ∈ b in order to show B ∈ c. Since ⊢ (A → B) → (A → B), we have ⊢ (A → B) ⊨ A → B by S₁⁰. But S₁abi, so B ∈ c as required. □

It is easy to see that in any extension of B⁺局限 with the rules S₁⁰ and S₁⁹, → is the residual of ⊨ such that S₁ collapses to R₁ in models.

4. Negation

4.1. The systems BM局限⁰ and B局限⁰

For a basic negation-extension of B⁺局限, we add the De Morgan Laws A⁹, A¹⁰ and Contraposition R⁶:

A⁹ ¬(A ∧ B) ↔ ¬A ∨ ¬B
A¹⁰ ¬A ∧ ¬B ↔ ¬(A ∨ B)
R⁶ A → B ⇒ ¬B → ¬A.

We call this system BM局限⁺. A⁹ and A¹⁰ also contain redundancies. We can prove each of A⁹ and A¹⁰ in the right-to-left direction using Contraposition and the positive axioms.

A BM局限-frame ⪪ is an 8-tuple < o, W, O, R₁, R₂, S₁, S₂, * >, where * is a one-place function from W to W, and the other elements are as before, such that postulate p⁸ holds

† The system BM is a negation-extension of B⁺ by the addition of the De Morgan Laws and Contraposition. We can also obtain BM局限 by adding ⊨局限 to BM.
for every \(a, b \in W\):

p8. If \(a \leq b\), then \(b^* \leq a^*\).

Note that p8 is required for the Hereditary Condition.

A BM\(_{\cap\cup}\)-model \(M\) is a 9-tuple

\[
< o, W, O, R_1, R_2, S_1, S_2, *, I >
\]

where

\[
< o, W, O, R_1, R_2, S_1, S_2, * >
\]

is a BM\(_{\cap\cup}\)-frame, and \(I\) is as before, such that the evaluation rule for negation is as follows:

\((\neg)\) \(I(\neg A, a) = 1\) if and only if \(I(A, a^*) \neq 1\).

It is easy to verify that the Hereditary Condition holds as before, and hence that BM\(_{\cap\cup}\) is sound with respect to the class of BM\(_{\cap\cup}\)-models. For completeness, we define * on a set of formulas \(a\) by \(a^* = \{ A : \neg A \not\in a \}\). The canonical model for BM\(_{\cap\cup}\) is now < \(o_c, W_c, O_c, R_1, R_2, S_1, S_2, *, I >\). By the De Morgan Laws and Contraposition, it can be shown that:

— If \(a\) is a theory, then \(a^*\) is an anti-dualtheory.
— If \(a\) is an anti-dualtheory, then \(a^*\) is a theory.

Hence, if \(a\) is a prime theory, \(a^*\) is also, that is, * is well-defined. Also, p8 is easy to verify.

Finally, rule (\(\neg\)) holds well in the canonical model. Thus the canonical model is indeed a BM\(_{\cap\cup}\) model.

The system B\(_{\cap\cup}\) is obtained from BM\(_{\cap\cup}\) by adding Double Negation\(\dagger\):

A11. \(A \leftrightarrow \neg\neg A\)

Then, a B\(_{\cap\cup}\)-model is a BM\(_{\cap\cup}\)-model satisfying \((a^{**} = a\) for all \(a \in W\). The soundness and completeness results are easy to prove.

4.2. Negation extensions

We now give some extensions of BM\(_{\cap\cup}\) and B\(_{\cap\cup}\).

S20 \(\neg A \rightarrow (A \sqcup B \rightarrow B)\)
S21 \((A \rightarrow (B \rightarrow C)) \rightarrow (B \rightarrow \neg A \sqcup C)\)
S22 \((A \rightarrow B \sqcup C) \rightarrow (\neg B \rightarrow (A \rightarrow C))\)
S23 \((\neg A \sqcup B) \rightarrow \neg A \sqcup \neg B\)
S24 \(\neg A \sqcup \neg B \rightarrow \neg(A \sqcup B)\)
S25 \(A \sqcup \neg A\)
S26 \(A \rightarrow (B \rightarrow C) \Rightarrow B \rightarrow \neg A \sqcup C\)
S27 \(A \rightarrow B \sqcup C \Rightarrow \neg B \rightarrow (A \rightarrow C)\)

\(\dagger\) The system B is an extension of BM by the addition of Double Negation. We can also obtain B\(_{\cap\cup}\) by adding \(\cap, \sqcup\) to B.
Theorem 4.1. For each row in the list above, the extension of $\text{BM}_{\text{L} \cup} / \text{B}_{\text{L} \cup}$ obtained by adding axiom or rule Si is sound and complete with respect to the class of $\text{BM}_{\text{L} \cup} / \text{B}_{\text{L} \cup}$-models $< o, W, O, R_1, R_2, S_1, S_2, *, I >$ that satisfy si.

Proof. These are proved in the same way as the positive extensions. We will just give proofs for some rows as examples.

21. For soundness, suppose $I (A \rightarrow (B \rightarrow C), a) = 1$ in order to show $I (B \rightarrow \neg A \cup C, a) = 1$. Suppose also that $R_2 abc$ and $I (\neg A \cup C, b) \neq 1$. It suffices to show $I (B, c) \neq 1$. Then $\exists d, e \in W$ such that $S_2 deb, I (\neg A, d) \neq 1$ and $I (C, e) \neq 1$. Since $S_2 deb$ and $R_2 abc$, we have $R_2 a(S_2\text{de})c$. So, by s21, $R_2 (R_1 a\text{d}^*e)c$, that is, $\exists x \in W$ such that $R_1 a\text{d}^* x$ and $R_2 x c$. Since $I (\neg A, d) \neq 1$, we have $I (A, d^*) = 1$. So $I (B \rightarrow C, x) = 1$ by $R_1 a\text{d}^* x$. Hence $I (B, c) \neq 1$ by $R_2 x c$.

For completeness, assume s21 holds. Let $R_2 a(S_2\text{de})c$ in order to show $R_2 (R_1 a\text{d}^*e)c$. Then $\exists x \in W_e$ such that $S_2\text{dex}$ and $R_2 a\text{xc}$. Let $y = a \oplus d^*$. It is immediate that $R_1 a\text{d}^* y$ and that y is an L-theory. We show $R_2 y e$. Suppose that $B \rightarrow C \in y$ and $C \notin e$. It suffices to show $B \notin c$. Since $B \rightarrow C \in y$, we have $\exists A \in d^*$ such that $A \rightarrow (B \rightarrow C) \in a$. So $B \rightarrow \neg A \cup C \in a$ by s21. Since $A \in d^*$, we have $\neg A \notin d$. So $\neg A \cup C \notin x$ by $S_2\text{dex}$. Hence $B \notin c$ by $R_2 a\text{c}$. Thus $R_2 y e$. Now we can use Corollary 2.11 to provide a prime L-theory y' such that $y \subseteq y'$ and $R_2 y' e$. It is immediate that $R_1 a\text{d}^* y'$. So we have $R_2 (R_1 a\text{d}^* e) c$.

22. For soundness, suppose $I (A \rightarrow B \cup C, a) = 1$ in order to show $I (\neg B \rightarrow (A \rightarrow C), a) = 1$. Suppose also that $R_1 abc$ and $I (\neg B, b) = 1$ in order to show $I (A \rightarrow C, c) = 1$. Finally, suppose $R_2 cde$ and $I (C, d) \neq 1$. It suffices to show $I (A, e) \neq 1$. Since $R_1 abc$ and $R_2 cde$, we have $R_2 (R_1 a\text{b})\text{de}$. So, by s22, $R_2 a(S_2\text{b}^* d)e$, that is, $\exists x \in W$ such that $S_2 b^* dx$ and $R_2 a\text{xe}$. Since $I (\neg B, b) = 1$, we have $I (B, b^*) \neq 1$. So $I (B \cup C, x) \neq 1$ by $S_2 b^* dx$. Hence $I (A, e) \neq 1$ by $R_2 x e$.

For completeness, assume s22 holds. Let $R_2 (R_1 a\text{b})\text{de}$ in order to show $R_2 a(S_2 b^* d)e$. Then $\exists x \in W_e$ such that $R_1 a\text{bx}$ and $R_2 x d$. Let $y = b^* \oplus d$. It is immediate that $S_2 b^* dx$ and that y is an L-anti-dualtheory. We will show $R_2 x ye$. Suppose that $A \rightarrow D \in a$ and $D \notin y$. It suffices to show $A \notin e$. Since $D \notin y$, we have $\exists B \notin b^*, \exists C \notin d$ such that $\vdash D \rightarrow B \cup C$. Hence $\vdash (A \rightarrow D) \rightarrow (A \rightarrow B \cup C)$. So $A \rightarrow B \cup C \in a$, and thus $\neg B \rightarrow (A \rightarrow C) \in a$ by s22. Since $B \notin b^*$, we have $\neg B \in b$. So $A \rightarrow C \in x$ by $R_1 abx$, and thus $A \notin e$ by $R_2 x d e$. So $R_2 x ye$. Now we can use Corollary 2.11 to provide a prime L-theory y' such that $y \subseteq y'$ and $R_2 y' e$. It is immediate that $S_2 b^* dy'$. So we have $R_2 a(S_2 b^* d)e$.

23. For soundness, suppose $I (\neg A \cup \neg B, c) \neq 1$ in order to show $I (\neg (A \cap B), c) \neq 1$. Thus $\exists a, b \in W$ such that $S_2 abc$, $I (\neg A, a) \neq 1$ and $I (\neg B, b) \neq 1$. So $I (A, a^*) = 1$ and $I (B, b^*) = 1$. Since $S_2 abc$, we have $S_1 a^* b^* c^*$ by s23. So $I (A \cap B, c^*) = 1$. Hence $I (\neg (A \cap B), c) \neq 1$ as required.

For completeness, assume that s23 holds. Let $S_2 a\text{bc}$ in order to show $S_1 a^* b^* c^*$. Suppose $A \in a^*$, $B \in b^*$ and $\vdash A \cap B \rightarrow C$. It suffices to show $C \in c^*$. Then $\neg A \notin a$ and $\neg B \notin b$. Since $S_2 abc$, we have $\neg A \cup \neg B \notin c$. By s23, we have $\neg (A \cap B) \notin c$, that is, $A \cap B \in c^*$. Hence $C \in c^*$ as required.
26. For soundness, suppose \(A \rightarrow (B \rightarrow C) \) is \(
abla \)-valid in order to show that \(B \rightarrow \nabla A \land C \) is \(
abla \)-valid also. So suppose \(\mathcal{I}(\nabla A, a, c) \neq 1 \) in order to show \(\mathcal{I}(B, c) \neq 1 \). Then \(\exists a, b \in W \) such that \(S_2abc, \mathcal{I}(\nabla A, a) \neq 1 \) and \(\mathcal{I}(C, b) \neq 1 \). So \(\mathcal{I}(A, a^*) = 1 \). Since \(A \rightarrow (B \rightarrow C) \) is \(
abla \)-valid, we have \(\mathcal{I}(B \rightarrow C, a^*) = 1 \) by Lemma 2.2 (3). But since \(S_2abc \), we have \(R_2a^*bc \) by \(s26 \). Hence \(\mathcal{I}(B, c) \neq 1 \) as required.

For completeness, assume that \(S26 \) holds. Let \(S_2abc \) in order to show \(R_2a^*bc \). Suppose \(B \rightarrow C \in a^* \) and \(C \notin b \), but \(B \in c \). Since \(\vdash (B \rightarrow C) \rightarrow (B \rightarrow C) \), we have \(\vdash B \rightarrow \nabla(B \rightarrow C) \lor C \) by \(s26 \). Hence \(\nabla(B \rightarrow C) \lor C \in c \). But \(B \rightarrow C \in a^* \), that is, \(\nabla(B \rightarrow C) \notin a \), so \(\nabla(B \rightarrow C) \lor C \notin c \) by \(S_2abc \). This gives a contradiction. Hence \(B \notin c \). Thus \(R_2a^*bc \).

5. Conclusions and future work

This paper has introduced and investigated a basic relevant logic \(B^{++}_{\nabla \land} \), which is obtained by adding two binary connectives \(\land \) and \(\lor \) to the minimal positive relevant logic \(B^+ \). The connectives \(\land \) and \(\lor \) are axiomatised by Dunn’s approach for Gaggle Theory, and can be seen as weaker versions of intensional conjunction and disjunction. Accordingly, the semantics for \(B^{++}_{\nabla \land} \) is an extension of the well-known relational semantics for \(B^+ \), with \(\rightarrow, \land, \lor \) modelled by ternary relations: \(R_1 \) and \(R_2 \) for \(\rightarrow \), \(S_1 \) for \(\land \), and \(S_2 \) for \(\lor \). The soundness and completeness of our semantics were proved by adaptations of familiar methods for relevant logics. Finally, a number of additional axioms and rules were given, each with the corresponding semantic conditions required for maintaining soundness and completeness.

In order to construct the canonical model, we defined \(R_1, R_2, S_1, S_2 \) as derivatives of operations \(\oplus, \otimes, \ominus, \oslash \) on theories and anti-dualtheories, respectively. This technique was mainly inspired by the operational treatments for \(\rightarrow \) in Fine (1974) and Brady (2003). It seems that the method can be generalised to \(n \)-placed connectives such that an \(n \)-placed connective can be modelled by several \(n \)-placed operations. In addition, since an anti-dualtheory \(a \) satisfies \(A \lor B \in a \) if and only if \(A \in a \) or \(B \in a \), we expect that a method for using anti-dualtheories to model \(\lor \) canonically can be developed, just as with theories for \(\land \). Then it turns out that \(\land \) and \(\lor \) can be dealt with separately without regard to distribution. Based on the above notions, we will investigate operational semantics for various logics with or without distribution. The further work will be presented in other papers.

Acknowledgments

We are grateful to the anonymous referee for helpful suggestions, and for pointing out several errors – these valuable comments led to an improvement in the paper.

References

